## $\beta$ -Adrenoceptor Subtype Selective Antagonism in Humans and in Vitro—A Comparison of pA $_2$ and K $_i$ Values of Propranolol, Atenolol, and Bisoprolol

Anton Wellstein, Dieter Palm, and \* Gustav G. Belz

Zentrum Pharmakologie, Klinikum der J. W. Goethe-Universität, Frankfurt, and \* Institut für Kardiovaskuläre Therapie, Wiesbaden, F.R.G.

**Summary:** We have compared the rather nonselective  $\beta$ -adrenoceptor antagonist propranolol and the  $\beta_1$ -subtype selective antagonists atenolol and bisoprolol in humans and in in vitro receptor binding studies. In receptor binding studies in rat salivary and reticulocyte membranes, propranolol showed a very small (about twofold)  $\beta_2$ -adrenoceptor selectivity, whereas atenolol showed a 35-fold and bisoprolol a 75-fold  $\beta_1$ -adrenoceptor subtype selectivity. After administration of 240 mg of propranolol, 100 mg of bisoprolol, and 200 mg of atenolol (single oral dose) to healthy male volunteers (N = 6 in each

group), isoprenaline dose–response curves at different time intervals were run. They showed rightward shifts, which were in agreement with the concentrations of antagonist present in plasma of the volunteers, if these concentrations were expressed as multifolds of the K<sub>i</sub> values in the receptor binding studies. Deviations from the direct relation between antagonist in plasma and rightward shift of the isoprenaline dose–response curves could be explained by the subtype selectivity of the different antagonists used. **Key Words:** Bisoprolol—Propranolol—Atenolol—β-Adrenoceptors—pA<sub>2</sub> values—K<sub>i</sub> values.

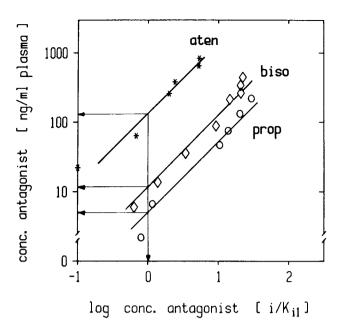
The aim of our study was to compare results from in vitro receptor binding studies at β-adrenoceptors from rat tissues with antagonistic effects of β-blockers of different subtype selectivity in humans. Using isoprenaline dose-response curves in humans after administration of single doses of the β-blockers propranolol, atendol, and bisoprolol, we hoped to get a quantitative measure of antagonist present at the receptor site in humans. In addition, we tried to construct Schild plots (1) by comparing the rightward shifts in the isoprenaline dose-response curves with the concentrations of the antagonists present in plasma samples obtained in parallel. One would expect that such Schild plots in humans should give Ki values (or pA2 values) in agreement with results from in vitro experiments (binding or functional studies), if the following assumptions hold true.

- 1. The antagonist concentration in plasma is in equilibrium with that at functionally active  $\beta$ -adrenoceptors in humans.
- 2. The antagonist concentration in plasma is detectable as the *free* concentration which appears as effective concentration at the  $\beta$ -adrenoceptors in humans.

## **METHODS**

Receptor binding studies were run as described earlier (2, 3) using a  $\beta_1$ - and a  $\beta_2$ -adrenoceptor preparation from rat

salivary gland and reticulocyte membranes, respectively. As a radioligand  $(-)[^3H]CGP$  12177 (4-(3-t-butylamino-2-hydroxypropoxy)-[5,7- $^3H]$ benzimidazol-2-one) from Amersham–Buchler (Braunschweig, F.R.G.; specific activity 50 Ci/mmol) was used.


Volunteers (n = 6 in each group) received either propranolol (240 mg), bisoprolol (100 mg), atenolol (200 mg), or placebo as a single oral dose after giving their written informed consent. Thereafter, isoprenaline dose–response curves were constructed at time points 0, 3, 6, 9, 12, 24, 36, 48, 60, 72, and 84 h. Plasma was sampled in parallel. Isoprenaline was infused between 0.1 and maximally 256  $\mu$ g/min for 3 min at twofold increasing dose steps until at least 25 beats/min of increase in heart rate was observed. Heart rate, blood pressure, peripheral resistance, and inotropy (QS<sub>2</sub>c) were monitored noninvasively using impedance cardiography and systolic time intervals.

From the rightward shift of the dose–response curves, Schild plots were constructed using the concentration of antagonist detected from the receptor assay (2, 3).

## **RESULTS AND DISCUSSION**

From receptor binding studies, a  $\beta_1$ -adrenoceptor subtype selectivity of propranolol (0.5-fold), bisoprolol (75-fold), and atenolol (35-fold) was delineated, which was in good agreement with results reported in literature (e.g., Refs. 4 and 5) in both receptor binding and functional studies. As shown in Fig. 1, 3 h after administration of the different antagonists, the initial free concentrations

Address correspondence and reprint requests to Dr. A. Wellstein at Zentrum Pharmakologie, Klinikim der J. W. Goethe-Universität, T. Stern-Kai 7, D-6000 Frankfurt, Federal Republic of Germany.



**FIG. 1.** Comparison of effect equivalents (multifolds of the  $K_1$  value) and plasma concentrations of different antagonists after administration to healthy volunteers. **Abscissa:** The respective antagonist concentration in plasma is expressed in multifolds of the  $K_1$  value at  $β_1$ -adrenoceptors (free concentration only). **Ordinate:** The scale used is ng/ml (total plasma concentration). The data points for atenolol (aten), bisoprolol (biso), and propranolol (prop) were derived after administration of 200, 100, and 240 mg once orally, respectively, at time points 3, 6, 9, 12, 24, 36, 48, and 60 h (from right top corner to left bottom corner). Atenolol ran below the detection limit after 36 h, bisoprolol after 60 h, and propranolol after 36 h. The arrows indicate the respective apparent  $K_1$  value expressed as total plasma concentration in ng/ml.

in plasma expressed in the conventional way as ng/ml were 1000 for atenolol, 300 for bisoprolol, and 250 for propranolol.

If one gives these concentrations in effect equivalents (the way they were actually measured in the receptor assay used), one can delineate for this time point the following:

At  $\beta_1$ -adrenoceptors, 240 mg of propranolol should induce a 97% blockade (= 40-fold of the  $K_i$  value), 200 mg of atenolol a 85% blockade (sixfold of the  $K_i$  value), and 100 mg of bisoprolol a 96% blockade (30-fold of the  $K_i$  value). In addition, one may read from this figure at which time point after administration of the respective antagonist the plasma concentration falls below the respective  $K_i$  concentration and thus 50% of  $\beta$ -adrenoceptor blockade: For propranolol and atenolol

the data point at 24 h and for bisoprolol at 48 h approach this concentration and should thus be an indicator of the half time of effect.

The rightward shifts of the isoprenaline dose—response curves (not shown) reflected this picture in the case of propranolol inasmuch as, independent of parameter used (heart rate, blood pressure, or peripheral resistance), a direct linear relation with a slope of 1 was seen when plotting the concentration of antagonist on the abscissa (as done in Fig. 1) and dose ratio (1) as a measure of the rightward shift on the ordinate (Schild plot) (1).

For the selective antagonists bisoprolol and atenolol, however, only for the parameter  $QS_2c$ —as a measure of inotropy—a slope of 1 in the Schild plot was seen and a decreasing slope (0.9–0.6) for systolic blood pressure > heart rate > diastolic blood pressure > peripheral resistance. This finding may be interpreted in terms of subtype-selective blockade of the isoprenaline response in humans by the different levels of receptor blockade achieved with propranolol in comparison to those observed for bisoprolol and atenolol. The differing sensitivity of the cardiovascular parameters towards blockade by the  $\beta_1$ -subtype-selective antagonists indicates differing proportions of  $\beta_2$ -adrenoceptors participating in the isoprenaline response.

In conclusion, the free concentration of  $\beta$ -adrenoceptor antagonists in plasma of humans as detectable by a subtype-selective receptor assay indicates that the plasma compartment is in equilibrium with the effect compartment ( $\beta$ -adrenoceptors). Moreover, in vitro receptor interaction yielding  $K_i$  values in receptor binding studies predicts the in vivo antagonistic effects and thus give Schild plots (and  $pA_2$  values) in humans identical with those in vitro.

## REFERENCES

- Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol 1959;14:48–58.
- Wellstein A, Palm D, Wiemer G, Schäfer-Korting M, Mutschler E: Simple and reliable radioreceptor assay for β-adrenoceptor antagonists and active metabolites in native human plasma. Eur J Clin Pharmacol 1984;27:545–53.
- 3. Wellstein A, Palm D, Belz GG, Pitschner HF. Receptor binding of propranolol is the missing link between plasma concentration kinetics and effect time course in man. *Eur J Clin Pharmacol* 1985;29:131–47.
- Wang XL, Brinkmann M, Brodde OE. Selective labelling of β<sub>1</sub>-adrenoceptors in rabbit lung membranes by (-)<sup>3</sup>H-bisoprolol. Eur J Pharmacol 1985;114:157-65.
- Kaumann AJ, Lemoine H. Direct labelling of myocardial β<sub>1</sub>-adrenoceptors. Comparison of binding affinity of (-)<sup>3</sup>H-bisoprolol with its blocking potency. *Naunyn-Schmiedeberg's Arch Pharmacol* 1985;332:27–39.